Model for Didactical Analysis

Tulisan ini merupakan bagian dari portfolio yang saya tulis pada saat sedang mengikuti mata kuliah Design Science Education and Communication (DSEC). DSEC merupakan mata kuliah yang wajib saya ambil saat sedang melaksanakan studi di Utrecht University. Portfolio ini diberi nama Personal Design Manual (PDM). Tujuan dari tugas ini sediri adalah agar nantinya, PDM ini dapa digunakan sebagai pedoman dalam proses menciptakan desain pembelajaran. Paragraf berikut ini merupakan kalimat yang saya kutip dari Guideline dalam menulis PDM yang bisa didownload di BlackBoard Utrecht University. Semoga tulisan ini bermanfaat buat pembaca yang sedang merancang desain pembelajaran.

The aim of the task is to throughout the course develop a collection of ideas, principles, approaches and strategies that the student personally expects to be helpful in his/her future designing activities. The personal manual can be a selection of existing ideas but can also include self-developed strategies. The final result consists of the set of design principles, exemplified by concrete examples and complemented by a motivation why and how this design principle seems useful. It is hoped that the PDM document will serve as a personal guideline to start a new design activity later in the study or in a future professional career, and as such as an efficient means to access and refresh the course’s learning outcomes.

The explanation of this manual will be a part of the oral assessment. Although the manual should be a personal product, there are still general criteria that have to be met; Continue reading “Model for Didactical Analysis”

A critical review of the research:

Teacher understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship

Tulisan berikut ini merupakan percobaan pertama dalam menulis critical analysis terhadap serangkaian riset yang dilakukan oleh Lederman (1997). Tulisan ini merupakan salah satu tugas yang diberikan oleh Dolly, dosen pengasuh mata kuliah Research Science Education and Communication (RSEC). RSEC sendiri merupakan salah satu mata kuliah yang saya ikuti di block 4 yang lalu. Sebenarnya terdapat banyak sekali kekurangan dari versi ideal yang disyaratkan, akan tetapi saya tetap mempertahankan versi  ini guna melihat sejauh mana perubahan yang telah saya lakukan selama mengikuti mata kuliah ini. Mohon masukannya.

Introduction

The development and students’ and teacher’ understanding and conception has been a concern of science education for over 40 years ago (Lederman, 1998). Many studies and reviews on the studies have been conducted in order to answer this problem and to validate the finding (for more information see in Lederman, 1998 & Fouad Abd-El-Khalick, 2000). This article is one of the efforts to do so. The author considers that giving this critical review on the research conducted by Lederman (1997) as the author critical perspective thinking in judging the reliability and validity of this research. Therefore this article mainly intend to give a critical review on the research conducted by Lederman (1997) as well addressed in report written in article namely “Teacher understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship”.

The article describe about the research conducted by Lederman (1997) that aimed to investigate whether the teacher understanding of the nature of science and classroom practice are integrated, and to identify what factor that facilitate or impede its relationship. The study conducted during one full academy year, involved five biology teachers in different high schools in Oregon State and some of their own students. The result of the study claim that teacher’s conception of science does not give an important influence in how the teachers elaborate the material or nature of science in the classroom practice. Continue reading

Exploring the Graph of Quadratic Function

As a final project of  Design of Science Education and Communication course, all students, including my partner Sylvana and I have to design a learning activity. There 3  documents that we design;

  1. Underpinning Design
  2. Students’ Worksheet and Exercise
  3. Teaching Guide and Rubric

Underpinning Design

In this document we will describe our design about the “Exploring the Graph of a Quadratic Function”, for which the target group is students grade X in St Albertus Senior High School (14 to 15 years old), in Indonesia. This design is mainly intended to help students in drawing the graph of a quadratic function and let the students experience drawing the graph of a quadratic function to be more meaningful. The more detailed information about target group will be described in the target group part. In this design, we set students to work with a software namely Graphmatica 2.0. This software is used to draw any function. Continue reading “Exploring the Graph of Quadratic Function”

The Hypothetical Learning Trajectory (HLT)

This is one of assignments given when I was in Realistic Mathematics Education course. We have to describe what steps that the articles show.

The Hypothetical Learning Trajectory (HLT)

By : Dwi Afrini Risma (F112661)

Simon used a brilliant metaphor to describe how a teacher needs to make planning before teaching, i.e. journey metaphor. Based on this metaphor, in order to reach the learning goal, teacher has to make a learning trajectory in which give a guideline for every learning step made. This trajectory is not only describes how the learning process started but also how to shift students progress in thinking from model of to model for. An actual teaching experience in the classroom perhaps will differ from the design because of the students’ thinking and big idea. When teacher experience this situation, they have to revise the design and may implant the new design. This cyclic process is introduced by Simon (1995) with the term hypothetical learning trajectory (HLT).

In Koeno Gravemeijer article, Measurement and Flexible Arithmetic can be begun by situating the classroom teaching experiment on measurement and arithmetic in context of the research that proceeded. In this learning, the goal is to helps students develop a framework of number relations, which would enable them to construe flexible computation strategies for addition and subtraction up to 100. In the design, we use ruler as a model of iterating some measurement unit and the empty number line as a model for of mathematical reasoning. The trajectory of this activity can be seen in the following scheme.

The scheme in figure 1 designed following every students progress in thinking, in which the learning process begin with constructing context-based meaning of measuring and end with reasoning with a flexible ruler.

According to Gravemeijer (2004), teacher has to investigate whether the thinking of students actually evolves as conjecture, and he or she has to revise or adjust the learning trajectory on the basis of his or her finding (Gravemeijer, 2004). Thus, Cobb noted that design researcher not only envisions as a sequence of instruction but also forms conjectures about the potential mathematical argumentation and evolving tool use that might accompany the realization of the sequence (Gravemeijer, Bowers, & Stephan, 2003). The following scheme (Figure 2) is a manner in global structure of a hypotetical learning trajectory.

Pacing to structure linear distance:

In the first step we construct students understanding towards context-based meaning of measuring. Based on this article, students have to start with King’s foot as a standardized of measuring unit. This activity will be considered as important starting point to students to think that they need a standard in measurement since each person has different length of foot. In the other hand, it is also become meaningful and realistic for them since measuring by foot is familiar to them.

Measuring with different iterable unit:

In this activity, students are allowed to use a different iterable unit: unifix cubes in a smurf scenario in which it is as representative of smurfs food cans. This activity is important because it would allow students deal with larger numbers easily.

Can we use a small number for measuring a large quantity?

In this activity, students are confronted with a dilemma in which the smurfs decide to only use small number of food cans instead of 50 cans. This activity is important to develop students’ sense of counting by ten.

Counting by ten and adjusting by adding or subtracting ones

As continuance of the previous activity, this activity can help student reason with tens and ones to structure the number up to 100.

Measuring paper strip of ten units of one cube then followed by reasoning using the strip

The idea of this activity is to introduce a measurement strip that made of a paper strip on which 10 units of ten were iterated, each subdivided into 10 units of one cube. We hope that eventually a number on the measurement strip show the students about the distance extended from beginning of measurement strip to the line to which this number belongs.

Using the strip to reason about comparing, incrementing, and decrementing lengths of object that are not physically present.

The goal of this activity is to develop students’ arithmetical solution strategies. The focus is on indentifying and comparing the length and the height of an object numerically.

Reasoning about magnitudes using measurement stick

The goal of this activity is to let them get used to a measurements stick in which the number has been erased. Therefore, students can read the sign in stick even though the stick has no number on it. In addition, they can use it to give reason about the magnitudes.

Introduction to empty number line

The important of this activity is by using this tool; teacher can support students’ effort to reason with a tool that was not decremented with specific unit

Reasoning with empty number line

In this stage, we hope students can use the same solution strategy and explanation when reasoning. In other word, students can relate another same problem with different context by using a same strategy, in which they use empty number line as their tool on reasoning.

Reference

Gravemeijer, K. (2004). Creating opportunities for students to reinvent mathematics. ICMI 2004 (pp. 1-17). State College, PA, USA: ICMI.

Gravemeijer, K., Bowers, J., & Stephan, M. (2003). A Hypotatical Learning Trajectory on Measurement and Flexible Arithemetic. Journal for Research in Mathematics Education 12, pp. 56-64.

Daftar Peserta yang Lolos Seleksi Berkas IMPoME 2012 dan Berhak Mengikuti Wawancara

 

DAFTAR WAWANCARA SELEKSI S2 IMPOME-PMRI 2012

No

Nama

Lokasi Wawancara

Tanggal Wawancara

1

Achmad Dhany Pachrudin

Surabaya

ditentukan kemudian

2

Ahmad Wachidul Kohar

Surabaya

ditentukan kemudian

3

Dimas Danar Septiyadi

Surabaya

ditentukan kemudian

4

Junaidah Wildani

Surabaya

ditentukan kemudian

5

Rizky Oktaviana Eka Putri

Surabaya

ditentukan kemudian

6

Siti Jakiah Mutmainah

Surabaya

ditentukan kemudian

7

Andika Wahyu Ferdiansyah

Surabaya

ditentukan kemudian

8

Nurul Hayati

Surabaya

ditentukan kemudian

9

Wisnu Siwi Satiti

Surabaya

ditentukan kemudian

10

Yoga Dwi Windy Kusuma Ningtyas

Surabaya

ditentukan kemudian

11

Rafael Marianus Rusik

Kupang

ditentukan kemudian

12

Talisadika Maifa

Kupang

ditentukan kemudian

13

Ermita

Makassar

19 Mar 2012, 08.00 WITA

14

Nur Wahidin Azhari

Makassar

19 Mar 2012, 08.00 WITA

15

Said Fachry Assagaf

Makassar

19 Mar 2012, 08.00 WITA

16

Salwah

Makassar

19 Mar 2012, 08.00 WITA

17

Sitti Busyrah Muchsin

Makassar

19 Mar 2012, 08.00 WITA

18

Sitti Masyitah Meliana R.

Makassar

19 Mar 2012, 08.00 WITA

19

Ummy Salmah

Makassar

19 Mar 2012, 08.00 WITA

20

I. Ketut Kertayasa

Makassar

19 Mar 2012, 08.00 WITA

21

Ambarsari Kusuma Wardani

Palembang

12 Mar 2012, 08.00 WIB

22

Lidya Cahyani

Palembang

12 Mar 2012, 08.00 WIB

23

Titi Aquarti

Palembang

12 Mar 2012, 08.00 WIB

24

Nur Rahmi Desiana

Palembang

12 Mar 2012, 08.00 WIB

25

M. Hafiz

Bandung

7 Maret 2012, 14.00 WIB

26

Gida Kadarisma

Bandung

7 Maret 2012, 14.00 WIB

27

Fanny Fathoni

Semarang

9 Maret 2012, 14.00 WIB

28

Herani Tri Lestiana

Semarang

9 Maret 2012, 14.00 WIB

29

Irkham Ulil Albab

Semarang

9 Maret 2012, 14.00 WIB

30

Sri Rejeki

Yogyakarta

12 Mar 2012, 09.00 WIB

31

Cici Tri Wanita

Yogyakarta

12 Mar 2012, 09.00 WIB

32

Wahid Yunianto

Yogyakarta

12 Mar 2012, 09.00 WIB

33

Thaibil Anwar

B.Aceh

ditentukan kemudian

34

Andrea Arifsyah NST

Medan

ditentukan kemudian

35

Nikmatul Husna

Padang

ditentukan kemudian

36

Pipit Firmanti

Padang

ditentukan kemudian

37

Ronal Rifandi

Padang

ditentukan kemudian

38

Yhance Hendra Diana

Padang

ditentukan kemudian

39

Ahmad Khairudin

Banjarmasin

ditentukan kemudian

40

Boni Fasius Hery

Banjarmasin

ditentukan kemudian

41

Yusi Riza

Banjarmasin

ditentukan kemudian

Cara Praktis Mengajar Bangun Ruang Untuk Siswa SD

Bagi sebagian siswa bahkan hingga mahasiswa, geometri merupakan salah satu hal yang ditakuti. Hal ini, didukung oleh rendahnya tingkat kemampuan imajinasi siswa. Sebagian guru juga mengeluhkan  seringnya terjadi kekeliruan siswa dalam mengingat bagian-bagian dari suatu bangun ruang, seperti sisi, titik sudut dan rusuk.

Realistic Mathematics Education (RME) atau di Negara kita lebih akrab dikenal dengan sebutan Pendidikan Matematika Realistik  Indonesia (PMRI) menawarkan sebuah solusi unik yang lebih muda diingatkan dan diingat oleh siswa. Cukup dengan bantuan tusuk gigi dan permen kenyal, maka semua akan terasa lebih gampang. Bagaimana bisa? Continue reading “Cara Praktis Mengajar Bangun Ruang Untuk Siswa SD”

Pemantapan Konsep Penjumlahan dengan Permainan Twee

Twee adalah salah satu permainan yang diadaptasi dari salah satu permainan yang tersaji di website rekenweb, sebuah situs milik Utrecht University, Belanda. Twee yang dalam bahasa Indonesianya berarti dua ini, merupakan salah satu permainan yang dapat digunakan sebagai media pemantapan materi pembelajaran untuk siswa kelas 1 SD, khususnya pada materi penjumlahan.  Untuk memenangkan permainan ini, siswa tidak hanya dituntut untuk mampu melakukan penjumlahan dengan benar, tetapi juga diperlukan kemampuan untuk menyusun strategi.

Gambar 1. Tampilan Permainan Twee di Website

Meskipun membutuhkan strategi khusus, permainan ini didesain sesederhana mungkin, menarik, dan mudah untuk dimainkan, sehingga dapat dimainkan oleh anak-anak dan orang dewasa.

Pada website resminya, permainan ini dapat dimainkan dengan tiga tingkat kesulitan yang berbeda; yakni mudah, sulit, dan sangat sulit. Akan tetapi, guna menyesuaikan sasaran pembelajaran, pada lembar kegiatan ini, permain Twee disajikan dengan tingkat kesulitan yang mudah. Bermainan ini dapat dimainkan secara berkelompok maupun sendiri. Akan lebih menarik lagi jika permainan ini dimainkan oleh beberapa kelompok pada waktu yang bersamaan, karena masing-masing kelompok bisa saja menggunakan strategi yang berbeda.

Untuk memainkan permainan ini secara manual, anda dapat mendownload file pdf yang sudah didesain sehingga dapat dimainkan langsung di kelas, dengan mengklik link ini Twee

Dan untuk memainkannya dengan applikasi java, dapat anda lakukan dengan mengakses link berikut ini:

http://www.fi.uu.nl/toepassingen/03150/toepassing_rekenweb.html